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Abstract

This paper presents the nonlinear identification of a capacitive dual-backplate microelectromechanical systems (MEMS)

microphone. First, a nonlinear lumped element model of the coupled electromechanical microphone dynamics is

developed. Nonlinear finite element analyses are performed to verify the accuracy of the lumped linear and cubic stiffnesses

of the diaphragm. In order to experimentally extract the system parameters, an approximate solution using the second-

order multiple scales method is synthesized for a nonlinear microphone model, subject to an electrical step input.

A nonlinear least-squares technique is then implemented to extract system parameters from laser vibrometry data of the

diaphragm motion. The results indicate that the theoretical fundamental resonant frequency, damping ratio and nonlinear

stiffness parameter agree with the corresponding extracted experimental parameters with 95% confidence interval

estimates.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A microphone is a transducer that converts unsteady pressure inputs into an electrical signal and is widely
employed in many applications such as sound field measurements [1], hearing aids [2], and acoustic arrays [3].
A variety of transduction schemes, such as piezoelectric, piezoresistive, capacitive, electrodynamic and optical,
have been used in microphones [4,5]. The vast majority of microphones are based on the measurement of a
pressure-induced structural deflection of a diaphragm.

The realization of low-cost, miniature instrumentation grade microphones is important for the development
of aeroacoustic directional arrays used for noise source localization and characterization [3,6]. Traditional
microphones, such as the Brüel & Kjær condenser microphones, offer excellent performance, but are costly
and currently not suitable for miniaturization. With the development of microelectromechanical systems
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. Microphone structure and basic sensing mechanism. The graphs show (a) a 3D cross-section view of microphone structure (not to

scale) and (b) a schematic of the electrical model of the microphone.
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(MEMS) technology, hundreds or thousands of devices can be fabricated together on a single silicon wafer.
This provides the opportunity to produce MEMS microphones that can approach the performance of
traditional microphones with lower cost and smaller size [7].

One of the key performance metrics of an aeroacoustic microphone is the bandwidth, which should at least
range from 45Hz to 90 kHz to accommodate 1/8th-scale testing [6]. During the past decade, many research
teams have developed or demonstrated capacitive MEMS microphones targeted at audio applications
[2,8–14]. Audio applications, however, require lower maximum sound pressure levels (o120 dB, ref. 20 mPa),
and the bandwidths are limited to 20 kHz. The development of capacitive MEMS microphones for the
aeroacoustic applications presents several challenges. First, scaling capacitive transduction schemes to the
microscale requires that the backplate is located in very close proximity to the diaphragm [4]. This close
spacing may result in unacceptably high viscous damping loses, thus limiting the bandwidth of the
microphone. Also, pull-in instabilities can be a potential issue [4,15]. A dual-backplate structure, that
possesses porous electrodes or backplates on either side of the diaphragm (Fig. 1(a)), may be able to mitigate
these challenges. Specifically, dual-backplate capacitive microphones offer the potential of smaller size, higher
sensitivity, larger dynamic range and broader bandwidth over single-backplate capacitive microphones [2,4].
The dual-backplate capacitive MEMS microphone studied here has been fabricated using the SUMMiT V
process at Sandia National Laboratories as well as facilities at the University of Florida for post-processing
[16]. The microphone has a fundamental resonant frequency of over 218 kHz [17]. The overall performance of
this microphone is expected to be further improved via the implementation of a force feedback controller [18].

The development of such a controller requires an accurate nonlinear model for the microphone system. The
microphone system must be designed such that it is not operated in regions of pull-in instabilities that typically
result in device structural failure. In addition, the stable operating range of the microphone can be potentially
expanded by leveraging the mechanical nonlinearity. Therefore, a thorough understanding of nonlinear
dynamics of the microphone is vital.

The remainder of this paper is organized as follows. First, a nonlinear governing equation for the
microphone is developed by lumped element modeling in Section 2. Nonlinear finite element analyses are
performed to verify the accuracy of the lumped linear and cubic stiffnesses of the diaphragm in Section 3.
Nonlinear equations to identify system parameters of the microphone from the experiments are provided in
Section 4. An approximate solution for the nonlinear oscillations of the diaphragm via the method of multiple
time scales is discussed in Section 5. Section 6 presents the detailed experimental study, and an uncertainty
analysis is conducted in Section 7. Conclusions are provided in Section 8.

2. Microphone model

A cross-sectional view for the microphone of interest is shown in Fig. 1(a). It has a 2.25 mm thick circular
solid diaphragm with a 230 mm radius and a 2 mm gap between each circular perforated backplate. The 5 mm
radius holes in the backplates allow the incident acoustic pressure to act on the diaphragm. A cavity under the
bottom backplate is formed via a deep reactive ion etch, and vented to the ambient pressure resulting in an ac
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Fig. 2. Top-view optical photograph of the microphone.
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measurement device. The three plates of the microphone are conductive; therefore, two capacitors exist
between the diaphragm and each backplate as shown in Fig. 1(b). When an acoustic wave impinges on the
microphone, the incident pressure deflects the middle diaphragm and thereby alters the capacitance of the two
capacitors. The differential capacitance change is converted to an output voltage through various types of
interface circuitry [19]. Fig. 2 shows a microscope photograph of the microphone top with a field of view of
approximately 1mm� 1mm. The bond pads shown in the photograph enable electrical connections between
the backplates and diaphragm.

2.1. Lumped element parameters

The microphone is a multiple energy domain (acoustical, mechanical and electrical) system governed by a
set of coupled nonlinear partial differential equations. The analysis and design of coupled-domain transducer
systems are commonly performed using lumped element models. The main assumption employed in lumped
element modeling (LEM) is that the characteristic length scales of the governing physical phenomena are
much larger than the largest geometric dimension. This quasi-static assumption limits the model validity up to
frequencies beyond the fundamental natural frequency of the microphone [19,20]. This limitation does not
adversely affect the design of microphone as the measurement bandwidth is usually defined to 73 dB of the
flat band response which occurs near the first resonance [6].

The microphone diaphragm is treated as a linearly elastic, axisymmetric, clamped circular plate possessing
no in-plane stress. From the theory of elasticity [21], the transverse displacement, w(r), under a uniform
pressure load is

wðrÞ ¼ x 1�
r

a

� �2� �2
, (1)

where x is the center displacement of the diaphragm and will be defined later, r is the distance of any radial
point along the radius, and a is the radius of the diaphragm.

The lumped element modeling of the diaphragm of the microphone is conducted via conjugate power
variables in the mechanical energy domain, where force is the effort variable and velocity is the flow variable
[19]. The diaphragm with distributed deflections is lumped into a rigid piston that translates with the center
deflection of the diaphragm and possesses an equivalent mass, area and compliance.

The lumped mass is determined by equating the lumped kinetic energy at the center of the diaphragm to the
total kinetic energy stored in the distributed deflections. In the mechanical domain, based on Eq. (1), the
equivalent lumped mass, Mme, is calculated as [19,20]

Mme ¼
1
5
pa2hrd , (2)
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where h is the thickness of the diaphragm and rd is the density of the diaphragm. Physically, in order to
conserve the kinetic energy, a rigid piston with a mass that is 1/5 that of the actual diaphragm is
used. Similarly, the effective area of the diaphragm, Ame, is determined by enforcing continuity of volume
velocity [19,20],

Ame ¼
1
3
pa2. (3)

The center displacement of the diaphragm, under a large transverse uniform pressure load, is given by the
following expression when using an energy-based analytical approach [21]

x ¼
pa4

64D

1

1þ 0:4708x2
�

h2
, (4)

where p is the applied acoustic pressure, and D is the flexural rigidity of the diaphragm defined as

D ¼
Eh3

12 ð1� n2Þ
, (5)

where n and E are the Poisson’s ratio and Young’s modulus for the polysilicon diaphragm, respectively.
The factor 0.4708 x2/h2 in Eq. (4) represents a geometric nonlinearity due to the effect of in-plane stretching,

which is significant and cannot be neglected when large displacements occur. If the center displacement is
much smaller than the thickness of the diaphragm, it follows that Eq. (4) is reduced to its linear counterpart
[21]. A more rigorous theory of the nonlinear mechanics of transducer diaphragms including the effects of
in-plane stress is given in Ref. [22].

Eq. (4) indicates that the diaphragm behaves like a Duffing’s hardening spring when large displacements
occur. Based on the lumped element model, the Duffing’s hardening spring model is written as

pAme ¼ k1xþ k3x
3, (6)

where k1 and k3 are linear and cubic stiffnesses of the diaphragm, respectively. By comparing Eq. (6) with
Eq. (4), k1 and k3 are obtained as

k1 ¼
64Dp
3a2

(7)

and

k3 ¼
10:044Dp

a2h2
. (8)

The shallow cavity of the microphone impedes the motion of the diaphragm by storing potential energy,
analogous to a spring. This process is considered isentropic since the adiabatic and inviscid assumptions are
valid for the microphone operating frequency range. Based on the lumped element assumption, the equivalent
mechanical stiffness, kc, is calculated as follows [19,20,23]:

kc ¼
rac20
pa2

cdc

ðpa2
cÞ

2
¼

prac20a
2
c

dc

, (9)

where c0 is the isentropic speed of sound in air, ra is the density of air, ac and dc are the radius and depth of the
cavity cylinder, respectively. ðpa2

cÞ
2 is used to convert the acoustical stiffness into the mechanical stiffness.

When the diaphragm vibrates, the gas flow between the diaphragm and backplate is divided into two parts;
the horizontal gas flow between the two parallel plates and the vertical gas flow through the circular backplate
holes. Viscous damping caused by the horizontal gas flow in the gaps is often referred to as squeeze-film
damping, its lumped damping coefficient, bs, is given by [24,25]

bs
¼

4mpa4

3nbpd3
0

f ðAbpÞ þ
4mpa4

3ntpd3
0

f ðAtpÞ, (10)

where m is the dynamic viscosity of air, d0 is the nominal gap between backplates and diaphragm, ntp and nbp
are total number of holes in the top and bottom backplates, respectively. The porosity of the top and bottom
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backplates is given by Atp and Abp, respectively, and f( ) is a function with the following form:

f ðX Þ ¼
1

4
ln

1

X

� �
�

3

8
þ

1

2
X �

1

8
X 2. (11)

When the thickness of the backplate is comparable to the gap, the viscous damping due to the vertical gas
flow through the backplate holes becomes important. By modeling the motion in the holes as a pressure-driven
Poiseuille flow in a pipe, the lumped damping coefficient, bh, is given by [25]

bh
¼

8mphtpntp

A2
tp

þ
8mphbpnbp

A2
bp

; (12)

where htp and hbp are the thicknesses of the top and bottom backplates, respectively. Therefore, the total
lumped viscous damping, b, is given by

b ¼ bs
þ bh. (13)

2.2. Nonlinear dynamic model

Once all the lumped parameters are obtained, the microphone is represented by a single-degree-of-freedom
second-order nonlinear ordinary differential equation with simplified dynamics appropriate for theoretical
study. Fig. 3 shows a schematic of the dynamic model of the microphone. The top and bottom backplates are
assumed to be rigid and have equal areas as the diaphragm. In general, if the top and bottom backplates are
biased with respect to the middle diaphragm by two electrical signals (7V(t)) with equal magnitudes and
opposite polarity, the dynamic equation of motion is [26]

Mme €xþ b _xþ ðk1 þ kcÞxþ k3x3

¼ �
�0Ame

2

V ðtÞ2

ðd0 þ xÞ2
�

V ðtÞ2

ðd0 � xÞ2

� �
� pAme, ð14Þ

where an upward motion of the diaphragm is assumed to be positive, and a parallel-plate assumption is used
when determining the electrostatic forces. Eq. (14) represents a nonlinear dynamic system with coupled cubic
k1, k3
b

Mme, Ame

Pressure  p

kc
V(t)

−V(t)

x = 0

d0

d0

Top backplate

Bottom backplate

x
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Fig. 3. Nonlinear dynamic model of a dual-backplate MEMS microphone.
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Table 1

Physical dimensions, material properties [31] and theoretical lumped parameters of the microphone

Property Nominal value Lumped parameter Nominal value

a 230.0mm k1 202.2N/m

ac 187.0mm k3 1.880� 1013N/m3

d0 2.000mm kc 24.27N/m

dc 650.0mm Mme 1.668� 10�10 kg

h 2.250mm Ame 5.540� 10�8m2

htp 2.250mm b 3.145� 10�5N s/m

hbp 2.500mm x 8.091� 10�2

E 160.0GPa o0/2p 185.5 kHz

r 2.230� 103 kg/m3 b 1.127� 1023N/m3/kg

n 0.220 G 332.2m2/kg
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mechanical and electrostatic nonlinearities,

€xþ 2 xo0 _xþ o2
0xþ bx3

¼ �
�0G
2

V ðtÞ2

ðd0 þ xÞ2
�

V ðtÞ2

ðd0 � xÞ2

� �
� pG, ð15Þ

where o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ kcÞ=Mme

p
is the fundamental resonant frequency, x ¼ b/(2Mmeo0) is the damping ratio,

b ¼ k3/Mme is the nonlinear stiffness parameter and G ¼ Ame/Mme is the ratio of lumped area over lumped
mass.

A list of the primary physical dimensions and material properties is given in Table 1. The theoretical lumped
element model parameters that correspond to these dimensions and material properties are also listed in
Table 1.
3. Nonlinear FEA verification

This section describes the steps taken to verify the accuracy of the theoretical lumped element stiffnesses,
namely k1 and k3 of the diaphragm model. Three-dimensional (3D) nonlinear finite element analyses (FEA)
are carried out using a commercial software package, CoventorWare by Coventor, Inc.,2 to extract the lumped
mechanical stiffnesses of the diaphragm. The 3D mesh of the diaphragm has 82452 solid brick elements and
the average aspect ratio of the mesh is approximately 1.62. Based on this mesh, converged displacement results
have been achieved with the diaphragm under the applied uniform pressure.

The material properties and physical dimensions of the diaphragm used in the FEA are taken from Table 1.
The side surface of the diaphragm is clamped for the boundary condition. A series of uniform pressures with
amplitudes varying from 10 to 4000 Pa are applied to the top surface of the diaphragm and the FEA are
carried out to yield the transverse center deflection of the diaphragm for each applied pressure.

Fig. 4 shows a plot of transverse center deflections of the diaphragm. The ideal linear, energy-based
analytical as well as exact analytical deflection results (from Ref. [22]) are also plotted in Fig. 4. As seen from
the plot, three sets of nonlinear deflection results are in good agreement with each other. The mechanical
nonlinearity becomes important for the large applied pressure, for example, when the pressure value is
above 2000 Pa.

The lumped linear and cubic stiffnesses are extracted by curve-fitting the simulated nonlinear center
displacements of the diaphragm with the formula in Eq. (6), and the final results are listed in Table 2. From the
table, the differences between the theoretical and FEA linear and cubic stiffnesses are approximately 1.3% and
5.0%, respectively.
2Commercial software is identified for completeness and does not imply endorsement by the authors.
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Table 2

Comparison of nonlinear FEA and LEM results

Result Linear stiffness k1 (N/m) Cubic stiffness k3 (N/m3)

Nonlinear FEA 199.7 1.979� 1013

LEM 202.2 1.880� 1013

Difference 1.252% 5.003%

J. Liu et al. / Journal of Sound and Vibration 309 (2008) 276–292282
4. Nonlinear equations for experiments

As seen from Eq. (15), system parameters (x, o0, b, and G) determine the dynamic behavior of the
microphone. Although system parameters can be calculated theoretically from LEM, it is well-known that
some of the modeling assumptions are idealizations. For example, the actual device possesses a finite amount
of compliance in the diaphragm boundary conditions. Also the backplates are compliant and have slightly
different areas. Therefore, some errors will exist between the theoretical and actual system parameters, and
characterization experiments are required to determine the actual system parameters to evaluate the accuracy
of the theoretical model.

Because the capacitive microphone is a reciprocal electromechanical transducer, the dynamics of the device
can be deduced by measuring the diaphragm motion when driven by electrostatic forcing in a quiescent
acoustic field. In this study, a unipolar square wave with a duty cycle of 0.5, V(t), was applied directly to either
the top or bottom backplate with the diaphragm and the other backplate both electrically grounded.
The expression for the applied unipolar square pulse is

V ðtÞ ¼
V 0; nTptonT þ T

2
;

0; nT þ T
2 ptoðnþ 1ÞT ;

(
(16)

where V0 and T are the voltage amplitude and period of the square pulse, respectively, and n ¼ 0,1,2,y .
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During the time nT+T/2pto(n+1), no electrostatic force acts on the diaphragm, the governing equation
for the free vibration of diaphragm is

€xþ 2xo0 _xþ o2
0xþ bx3 ¼ 0. (17)

During the time nTptonT+T/2, an electrostatic force acts on the diaphragm and forces it to vibrate. The
backplates are assumed to be symmetric about the diaphragm. Therefore, only the governing equation for the
case in which the square pulse is applied to the top backplate is considered in the following analysis:

€xþ 2xo0 _xþ o2
0xþ bx3 ¼

�0G
2

V2
0

ðd0 � xÞ2
. (18)

The above electrostatic force has a singularity at x ¼ d0. For |x|od0, a Taylor’s series expansion for the
nonlinear electrostatic force, about x ¼ 0 and up to the third order, results in a convenient polynomial
expression:

�0G
2

V2
0

ðd0 � xÞ2
�
�0GV 2

0

2d2
0

1þ 2
x

d0
þ 3

x

d0

� �2

þ 4
x

d0

� �3
" #

. (19)

As seen from Eq. (19), a spring softening effect is introduced by the nonlinear electrostatic force. It follows
that Eq. (18) is written as

€xþ a1 _xþ a2xþ a3x2 þ a4x3 ¼ a5, (20)

where

a1 ¼ 2xo0, (21)

a2 ¼ o2
0 �

�0GV 2
0

d3
0

, (22)

a3 ¼ �
3�0GV 2

0

2d4
0

, (23)

a4 ¼ b�
2�0GV 2

0

d5
0

, (24)

and

a5 ¼
�0GV2

0

2d2
0

. (25)

Eq. (20) represents a general damped second-order system with both quadratic and cubic nonlinearities and a
non-zero external step load, and its approximate analytical solution is obtained in the following section.

5. Approximate solution by multiple time scales

Since there is no closed form solution to Eq. (20), a multiple time scales approach [26,27] is used to obtain
the approximate solution. The approximate solution of Eq. (20) is assumed as a second-order expansion in
terms of a small positive parameter e, which is a measure of the amplitude of the motion,

xðt0; t1; t2; �Þ ¼ x0ðt0; t1; t2Þ þ �x1ðt0; t1; t2Þ þ �2x2ðt0; t1; t2Þ, (26)

where x0, x1, and x2 are three unknown functions, and the multiple independent time scales are defined as

t0 ¼ t; t1 ¼ �t and t2 ¼ �2t. (27)

The coefficients in Eq. (20) are further ordered to show up in the O(e2) by performing the following
substitution:

a1 ¼ �2m1; a2 ¼ o2; a3 ¼ �2m3 and a4 ¼ �2m4. (28)
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Eqs. (26)–(28) are then substituted into Eq. (20) and the coefficients of the O(e) are collected to arrive a series
of equations. The result of the solution process, which is detailed in Appendix A, gives the following
approximate solution to Eq. (20):

xðtÞ ¼
a5
a2
þ R0e

�1=2a1t cos oþ
2a2a3a5 þ 3a4a25

2oa22

� �
t

�
�
3a4R2

0

8oa1
e�a1t þ f0

�
. (29)

If an initial displacement w0 is imposed and the system starts from rest, the resulting transient displacement
becomes

xðtÞ ¼
a5
a2
þ w

_
0e
�1=2a1t cos oþ

2a2a3a5 þ 3a4a25
2oa22

� �
t

�
�
3a4w

_2

0

8oa1
ðe�a1t � 1Þ

#
, (30)

where

w
_
0 ¼ w0 �

a5
a2

. (31)

If there is no external step loading and quadratic nonlinearity in the system (a3 ¼ 0 and a5 ¼ 0), which
occurs for the experimental case of transients about a zero equilibrium position, Eq. (30) is then reduced into

xðtÞ ¼ w0e
�1=2a1t cos ot�

3a4w20
8oa1

ðe�a1t � 1Þ

� �
. (32)

Eq. (32) is easily applied to Eq. (17) to yield the following solution:

xðtÞ ¼ w0e
�xot cos ot�

3bw20
16xo2

ðe�2xot � 1Þ

� �
. (33)

Once a1, a2, a3, a4, and a5 are estimated by a nonlinear least-squares curve-fitting technique based on the
time history of experimental transient displacement, system parameters x, o0, b, G, and d0 are then identified
by solving Eqs. (21)–(25) simultaneously as follows:

d0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�3

a5
a3

r
, (34)

G ¼
2d2

0a5
�0V

2
0

, (35)

o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ

�0V
2
0G

d3
0

s
, (36)

x ¼
a1
2o0

(37)

and

b ¼ a4 þ
2�0V2

0G

d5
0

. (38)

6. Experimental study

The characterization experiment of the microphone was conducted using the scanning laser Doppler
vibrometer (Polytec MSV 300). The block diagram of the experiment setup is shown in Fig. 5 and is discussed
further below.
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6.1. Experiment setup

The test microphone is positioned on the stage of a microscope (OLYMPUS BX60). A fiber interferometer
(OFV 511) generates the input laser beam and receives the resulting interference optical signal through a
microscope adapter (OFV 074). The resulting optical signal is converted into an electrical signal by the
photodetector inside the fiber interferometer and subsequently decoded by a vibrometer controller
(OFV 3001S) to generate the velocity. The velocity output from the Vibrometer controller is then connected
to the ‘‘VEL’’ channel of a scanner controller (MSV-Z-040). A data acquisition PC (VibraScan) acquires data
from both ‘‘REF’’ and ‘‘VEL’’ channels in the scanner controller [28]. The output of the function generator
(DS345, Stanford Research Systems) is used to provide the electrical signal to electromechanically excite the
microphone under the microscope. It should be pointed out that two function generators in series with phase
locked are used to output the high voltage signal (410V) in the experiments.

Fig. 6 shows an optical photograph of a laser beam spot, which was positioned inside the center hole of the
top backplate so that the center velocity response of the diaphragm was measured during the experiments.
A sampling rate of 2.56MHz was used to record the velocity for 3.2ms; 100 ensemble averages were used to
minimize the noise in the measured velocity data.

As mentioned previously, during the high part (up-stroke) of the square pulse cycle, the vibration of the
diaphragm is forced by the external electrostatic force, and free response occurs during the low part
(down-stroke) of the square pulse cycle. In order to let the transient free response of the diaphragm decay
completely before the follow-up forced response, a 1 kHz repetition frequency is used.

When the characterization experiments using the top backplate for actuation is conducted, the middle
diaphragm and the bottom backplate are electrically grounded. The square pulse was then applied directly to
the top backplate of the microphone, and the dynamic response of the center velocity of the diaphragm was
recorded for 100 ensembles. The above process was repeated several times for square pulses with different
voltage amplitudes. Similarly, the characterization experiments using the bottom backplate for actuation are
conducted with the middle diaphragm and the top backplate electrically grounded.
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6.2. Results

The trapezoidal rule is applied to numerically integrate the measured average center velocity to yield the
center displacement [29]. Because the time step is very small (0.39 ms), the numerical integration error is minute
and was assumed to be negligible. Also, a measurement velocity resolution of 1.5 mm/s is used in this study
[28]; therefore, the calculated minimum detectable displacement is approximately 2.4 pm at 100 kHz and
0.24 pm at 1MHz.

The experimental tests for the top backplate are discussed first with results shown in Fig. 7. Fig. 7(a) shows
the measured ensemble-averaged center velocity response (i.e. the up-stroke) of the diaphragm. As seen from
the plot, the center velocity decays quickly to zero. The corresponding integrated center displacement response
is shown in Fig. 7(b). Based on the measured velocity and integrated displacement response, a constructed
phase plot after 12 ms is generated in Fig. 7(c), showing the system spirals into a fixed point.

By using Eq. (30), a nonlinear least-squares curve-fitting procedure is carried out in MATLAB to obtain
system parameters x, o0, b, G, and d0 from the transient response data of the integrated center displacement.
Shown in Fig. 7(d) is the comparison plot of the integrated and curve-fit center displacement results. The
nonlinear least-squares curve-fit results are in good agreement with the integrated results. The curve-fit system
parameter results are summarized in Table 3.

A similar set of experiments is performed using the bottom backplate and the results are shown in Fig. 8.
The drift in the steady state of the integrated center displacement response in Fig. 8(b) is due to the experiment
setup because the laser vibrometer does not measure the static displacement. It should be pointed out that the
system parameters are extracted only from the transient response data of the integrated center displacement.
Therefore, the accuracy of the extracted system parameters is not affected by the undesired drift. Similarly, a
nonlinear least-squares curve-fitting procedure is carried out and the curve-fit system parameter results are
summarized in Table 3.

7. Uncertainty analysis and discussion

In the previous sections, no uncertainties were assumed in the physical dimensions and/or material
properties of the microphone. However, there always exists some uncertainty sources [30] in the real
microphone device and experiments. For example, variations in physical dimensions and material properties,
which are caused by the fabrication process, can often substantially alter the model parameters of a MEMS
device.
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Fig. 7. Results for the top backplate excitation by a unipolar 1 kHz square wave with an amplitude of 18V. The graphs show: (a) the

measured average center velocity, (b) the integrated center displacement, (c) a constructed phase plot after 12 ms, and (d) a comparison of

integrated (asterisk markers) and curve-fit (solid line) center displacements.

Table 3

Nonlinear least-squares curve-fit results for both the top and bottom backplate excitations

System parameter Top backplate excitation result Bottom backplate excitation result

x 7.791� 10�2 6.970� 10�2

d0 1.950mm 2.052mm
o0/2p 196.0 kHz 188.0 kHz

b 1.079� 1023N/m3/kg 1.224� 1023N/m3/kg

G 231.9m2/kga 112.6m2/kgb

aValue for 18V.
bValue for 5V.
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To carry out the uncertainty analysis, three uncertainty sources are considered: the uncertainty from the
measured velocity and integrated displacement; the uncertainty associated with the approximate solution and
nonlinear least-squares algorithm; and the uncertainty induced by the fabrication process. Further numerical
simulations show that the limits of the approximate solution are sufficient for the experiments. Also, further
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study shows that the fabrication-induced parameter uncertainties are large and dominant compared to other
uncertainties, thereafter only the uncertainties caused by the fabrication process are considered in the
following analysis.

From the reproducibility datasheet of the fabrication [31], for the 95% confidence interval, the thickness of
the diaphragm is 2.2770.02 mm. The thickness of the top backplate is 2.2770.012 mm. The thickness of the
bottom backplate is 2.5170.006 mm. The gap between diaphragm and bottom backplate is 2.270.5 mm, and
the gap between diaphragm and top backplate is 2.070.5 mm. For the Young’s modulus of polysilicon,
173720GPa is used [32]. These uncertainties are propagated into the calculated system parameters using
standard methods [33]. The final uncertainty analysis results are summarized in Table 4. As seen from Tables 1
and 4, the nominal values of system parameters x, o0, b, and G fall into their uncertainty estimates.

From Tables 1 and 4, the theoretical fundamental resonant frequency, damping ratio and nonlinear stiffness
parameter agree with the corresponding extracted experimental parameters with 95% confidence interval
estimates. Also, small differences exist between the experimentally identified system parameters for both
bottom and top single backplate microphones, respectively. The discrepancies are mainly due to the different
bottom and top capacitors, such as unequal air gaps and electrode areas.
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Table 4

Mean values and uncertainties of system parameters for a given 95% confidence level

System parameter Mean Uncertainty

x 7.272� 10�2 1.337� 10�2

o0/2p (kHz) 193.5 10.20

b (N/m3/kg) 1.219� 1023 0.1409� 1023

G (m2/kg) 329.2 2.901

J. Liu et al. / Journal of Sound and Vibration 309 (2008) 276–292 289
It is shown that G is a constant from the lumped element model based on a simple equal-area parallel plate
assumption. However, experimental results of G indicate that it is a function of the applied voltage; which
means that the equivalent area for calculating electrostatic forces depends on the applied voltage (assuming
the lumped mass is fixed). The changing experimental behavior of G could be due to several reasons. In the
actual physical device, the area of the top compliant backplate is larger than the area of the diaphragm, which
is larger than the area of the bottom compliant backplate. Therefore, the equal-area assumption is not
accurate in practice [34]. The overlapping area could change due to the different bending shapes of the plates
when different voltages are applied between the perforated backplate and diaphragm.

8. Conclusions

This paper presents the development of a nonlinear model and the experimental characterization of a dual-
backplate MEMS microphone that was fabricated for high-frequency aeroacoustic applications. LEM is used
to estimate system parameters for a nonlinear dynamic model in which the microphone is governed by a
second-order ordinary differential equation with electrostatic and cubic mechanical nonlinearities. Nonlinear
finite element analyses show that the differences between the theoretical and FEA linear and cubic stiffnesses
of the diaphragm are approximately 1.3% and 5.0%, respectively. The approximate solution to the nonlinear
microphone model, subjected to a unipolar square wave, is explored by the second-order multiple time scales
method. Based on the approximate solution, a nonlinear least-squares algorithm is implemented to extract
system parameters from the experimental data. An uncertainty analysis shows that the theoretical
fundamental resonant frequency, damping ratio and nonlinear stiffness parameter agree with the
corresponding extracted experimental parameters with 95% confidence interval estimates. Experimental
results of the ratio of lumped area over lumped mass (G) suggest that it is a function of the applied voltage,
and the discrepancy between its theoretical and experimental values is likely due to the inaccurate assumption
of equal-area parallel plates when the electrostatic force is calculated.
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Appendix A. Derivation of the approximate solution to Eq. (20)

The details for the approximate solution to Eq. (20) are provided in this appendix. Since the multiple
independent time scales are defined in Eq. (27), the time derivatives with respect to t become the following
expansion terms of the partial derivatives with respect to the corresponding time scales:

d

dt
¼ D0 þ �D1 þ �

2D2 (A.1)

and

d2

dt2
¼ D2

0 þ 2�D0D1 þ 2�2D0D2 þ �
2D2

1, (A.2)
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where

D0 ¼
d

dt0
;D1 ¼

d

dt1
and D2 ¼

d

dt2
. (A.3)

Substitution of Eqs. (26)–(28), (A.1)–(A.3) into Eq. (20) results in the following expressions after separating
into the O(e):

Oð�0Þ : D2
0x0 þ o2x0 ¼ a5, (A.4)

Oð�1Þ : D2
0x1 þ o2x1 ¼ �2D0D1x0 (A.5)

and

Oð�2Þ : D2
0x2 þ o2x2 ¼ �2D0D1x1 � 2D0D2x0 �D2

1x0 � m1D0x0 � m3x
2
0 � m4x

3
0. (A.6)

The general solution to Eq. (A.4) is

x0 ¼
a5
a2
þ Aðt1; t2Þeiot0 þ Āðt1; t2Þe�iot0 , (A.7)

where A(t1,t2) and Āðt1; t2Þ are complex conjugates. The following expression is obtained by substituting
Eq. (A.7) into Eq. (A.5):

D2
0x1 þ o2x1 ¼ �2io eiot0D1Aðt1; t2Þ � e�iot0D1Āðt1; t2Þ


 �
. (A.8)

The elimination of the secular terms from Eq. (A.8) requires that D1A(t1,t2) and D1Āðt1; t2Þ are zero, which
means that A and Ā are only functions of t2.

Therefore, the solution for Eq. (A.8) is written as

x1 ¼ Bðt1; t2Þeiot0 þ B̄ðt1; t2Þe�iot0 , (A.9)

where B(t1,t2) and B̄ðt1; t2Þ are complex conjugates. Substituting Eqs. (A.7) and (A.9) into Eq. (A.6) yields

D2
0x2 þ o2x2 ¼ �2ioðD1BÞ � 2ioðD2AÞ � 2m3

a5
a2

A

�

�im1oA� 3m4
a25
a22
þ Aj j2

� �
A

�
eiot0 þO:H:T:, ðA:10Þ

where O.H.T. are other harmonic terms that are neglected in the following analysis.
The elimination of the secular terms in Eq. (A.10) requires

�2ioðD1BÞ � 2ioðD2AÞ � im1oA� 2m3
a5
a2

A� 3m4
a25
a22
þ Aj j2

� �
A ¼ 0. (A.11)

It follows that B is only a function of t2 [27], therefore

�2ioD2A� im1oA� 2m3
a5
a2
þ 3m4

a25
a22

� �
A� 3m4A Aj j2 ¼ 0. (A.12)

The polar form for the A(t2) is written as

Aðt2Þ ¼ 1
2
Rðt2Þeifðt2Þ, (A.13)

where R is the amplitude of x0 and f is the phase angle. Substituting Eq. (A.13) into (A.12) and separating
into real and imaginary components results in

dR

dt2
þ

1

2
m1R ¼ 0 (A.14)

and

df
dt2
�

2m3a5a2 þ 3m4a
2
5

2oa22
�

3m4
8o

R2 ¼ 0. (A.15)
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The solutions for R and f are

Rðt2Þ ¼ R0e
�1=2m1t2 (A.16)

and

f t2ð Þ ¼
2m3a5a2 þ 3m4a

2
5

2oa22
t2 �

3m4R2
0

8om1
e�m1t2 þ f0, (A.17)

where R0 and f0 are constants determined by initial conditions. Combining Eqs. (26), (A.7), (A.13), (A.16),
and (A.17), the approximate solution is

xðt0; t1; t2Þ �
a5
a2
þ R0e

�1=2m1t2 cos ot0 þ
2m3a5a2 þ 3m4a

2
5

2oa22
t2

�
�
3m4R

2
0

8om1
e�m1t2 þ f0

�
. (A.18)

Using Eqs. (27) and (28), Eq. (A.18) is further simplified as

xðtÞ ¼
a5
a2
þ R0e

�1=2a1t cos oþ
2a2a3a5 þ 3a4a25

2oa22

� �
t

�
�
3a4R2

0

8oa1
e�a1t þ f0

�
. (A.19)
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